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Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Design test cases for code using fakes, mocks and spies
• Explain why you might need a test double in your testing
• Explain why you might need tests that are larger than unit tests
• Explain how large, deployed systems lead to additional testing challenges
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Story so far: Tests Check Return Values
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test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1]) 
});



export interface IClockWithListeners { 
reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time 
addListener(listener:IClockListener):void

}

export interface IClockListener {
// @param t - the current time, as reported by the clock
notify(t:number):void

}

export class ProducerClock implements IClockWithListeners {
// some implementation

}

Challenge: How to test the ProducerClock?
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clockWithObserverPattern.test.ts



Test the ProducerClock with a Fake 
ClockListener

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

clockWithObserverPattern.test.ts
export interface IClockWithListeners { 

reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time 
addListener(listener:IClockListener):void

}



Now we can test using the custom observer
import { ProducerClock } from  "./clockWithObserverPattern";

const clock1 = new ProducerClock
const listener1 = new ClockListenerforTest(clock1)

describe("tests for ProducerClock", () => {
test("after reset, listener should return 0", () => { 

clock1.reset()
expect(listener1.getTime()).toBe(0)

})
test("after one tick, listener should return 1", () => {

clock1.reset(); clock1.tick()
expect(listener1.getTime()).toBe(1)

})
test("after two ticks, listener should return 2", () => {

clock1.reset(); clock1.tick(); clock1.tick()
expect(listener1.getTime()).toBe(2)

})
})

clockWithObserverPattern.test.ts



“Test Doubles” Stand In For Other 
Components
• Act as a stand-in for components, allowing for 

testing in isolation
• Fakes: Replace client implementations with 

dummies for testing
• Mocks: Automatically-generated fake 

implementations for an interface
• Spies: Automatically-instrument internals of 

objects, classes or modules
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Test doubles replace uncontrollable things 
with things that you do control 
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Fake Listener: Discussion

• Good news:
• It works!
• It doesn’t require learning other libraries

• Bad news:
• It’s a maintenance burden (what if new methods are 

added to IClockListener?)
• It took manual effort to write
• Richer fakes (e.g. track how many times a method 

called) are even more effort to write

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}



Mocks are automated fakes
• Jest’s mocks return “undefined” by default (can be customized), and 

track calls to the function
test("simplest mock behavior", () => {

const mockFunction1 = jest.fn();

const result1 = mockFunction1("17");
const result2 = mockFunction1("42")

expect(result1).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunction1).toHaveBeenCalled();
expect(mockFunction1).toHaveBeenCalledTimes(2);

expect(mockFunction1).toHaveBeenCalledWith("17");
expect(mockFunction1).toHaveBeenCalledWith("42")

});



You can customize your mock in many ways
test("customizing mock functions", () => {

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation 
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(mockFunction2(3)).toBe(6);
expect(mockFunction2(14)).toBe(28)
expect(mockFunction2).toHaveBeenCalledWith(3);
expect(mockFunction2).toHaveBeenCalledWith(14);

// you can also reset the mock's history and implementation
mockFunction2.mockReset()
expect(mockFunction2).not.toHaveBeenCalledWith(14);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

simpleMocks.test.ts

https://jestjs.io/docs/mock-function-api


Mock Classes and Interfaces with Jest-Mock-
Extended
import { mock, mockClear } from 'jest-mock-extended';
import { IClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
//Automatically create an implementation of IClockListener, each method is a mock function
const listener1 = mock<IClockListener>();
clock1.addListener(listener1);

describe('tests for ProducerClock', () => {
beforeEach(() => {

mockClear(listener1); //Clear the mock function's history
});
test('after one tick, listener should return 1', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should return 2', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(2);
expect(listener1.notify).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternMock.test.ts



Unlike mocks, spies instrument existing 
implementations
• Consider cases where you don’t want a complete 

fake, but do want to check side-effects:
• What was sent on the network?
• How many times was a problem logged?
• What was inserted in the database?

• Jest can automatically instrument existing code to 
make it into a “spy” – a mock but with the original 
implementation

Spy 
"remembers"



Use jest.spyOn to create a spy on an object
import { ClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
const clockClient = new ClockListener(clock1);
const notifySpy = jest.spyOn(clockClient, 'notify’); // Spy on calls to notify on this clock
describe('tests for ProducerClock', () => {
beforeEach(() => {
notifySpy.mockClear(); // Clear the mock function's history

});
test('after one tick, listener should return 1', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should return 2', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(2);
expect(notifySpy).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternSpy.test.ts



• Syntax: jest.spyOn(object, methodName)
• Example from last slide:

• You can specify any object, and any method name (even private methods)
• Spy on objects or entire modules
• The spy logs all calls to that method of that object or module
• The call to the original still gets made, unless the spy explicitly supplies a substitute

• we'll illustrate this a few slides from now.

const clock1 = new ProducerClock();

/** Some listener that we happen to know about */
const clockClient = new ClockListener(clock1);

/** Spy on calls to 'notify' on this listener */
const notifySpy = jest.spyOn(clockClient, 'notify’); 

Spies can be used even when you can’t 
control the SUT



Let’s use mocks and spies to test the http 
client from the async module
export class Echo {

/** @argument a string
* @returns a promise to return the same string
* @requires axios
* @calls https://httpbin.org/get?answer=${str}
*/

public static async echo(str: string): Promise<string> {
const res = await axios.get(`https://httpbin.org/get?answer=${str}`);
return res.data.args.answer;

}

}

EchoClass.ts



Create a spy on (axios, 'get')

import { Echo } from './EchoClass';

// etc...

test('just spying on a function runs the original', async () => {
test('echo should return its argument', async () => {
const spy1 = jest.spyOn(axios, 'get');
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

});
});

echo.test.ts



Next step: define a mock for the axios call
async function mockAxiosCall(url: string) {

return { data: { args: { answer: url.split('=')[1] } } }; 
} 

// Hmm, we better test mockAxiosCall! 

describe('tests for mockAxiosCall', () => {
test('mockhttpbin should return its argument', async () => {
const url = 'https://httpbin.org/get?answer=33'
const res = await mockAxiosCall(url);
expect(res).toEqual({ data: { args: { answer: "33" } } });

});
})

echo.test.ts



Now install the mock, so the 'get' doesn't 
get called.

test('mock axios.get so httpbin is not called', async () => {
jest.resetAllMocks();
const spy1 = jest.spyOn(axios, 'get').mockImplementation(mockAxiosCall);
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

})

echo.test.ts



What if we wanted to test a client of echo? 
• But we didn't want to issue any http requests

import { Echo } from './EchoClass';

/** calls echo twice and concatenates the results */
export async function echoClient(str: string) {

const res1 = await Echo.echo(str);
const res2 = await Echo.echo(str);
return res1 + res2;

}

echoClient.ts



Solution: create a mock for Echo
import { echoClient } from './echoClient';

describe('tests for echoClient', () => {
beforeEach(jest.resetAllMocks);
beforeEach(() => {
// mock echo with a correct return value
jest.spyOn(Echo, 'echo').mockImplementation((str: string) => Promise.resolve(str));
// mock axios.get to always throw an error;
// if our test calls the real axios.get, it will fail
jest.spyOn(axios, 'get').mockRejectedValue('axios.get should not be called');

})
test('echoClient should return its argument twice', async () => {
const str = '345';
const res = await echoClient(str);
expect(res).toEqual(str + str);

});
})

echoClient.test.ts



Test Doubles Have Weaknesses
• Some failures may occur purely at the integration 

between components:
• The test may assume wrong behavior (wrongly encoded 

by mock)
• Higher fidelity mocks can help, but still just a snapshot of 

the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test double;
• The test is "brittle" because it depends on internal 

behavior of SUT;

• Potential maintenance burden: as SUT evolves, 
mocks must evolve.
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Not just its IO 
behavior, but 

also its 
dependencies

Did we correctly 
model the 

behavior of 
httpbin?



What if we didn't want to make assumptions 
about how httpbin behaves?
• We'd need to actually call httpbin.
• This is no longer a unit test; it's an integration test
• Which brings us to our next topic.



But some bugs are observable only when 
multiple components interact.
• These are usually because one module has 

made incorrect assumptions about some 
other module 

• Unit tests won’t reveal such bugs
• Mocks won’t help, either (since they may 

incorporate our incorrect assumptions)
• So you really need integration tests
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Integration tests may be larger

• Does the presence of 
other jobs on our 
server change the 
behavior of our 
program?

• Does the presence of 
the other servers 
change the behavior 
of our program?
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100,000 servers



Some Tests are Enormous
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Google classifies tests by “size”

• “small” = single process
• “medium” = single machine
• “large” = bigger than that.

27"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)
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How big is my test?

• Small: run in a single thread, can’t sleep, perform I/O or 
make blocking calls

• Medium: run on single computer, can use 
processes/threads, perform I/O, but only contact 
localhost

• Large: Everything else

28"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)



From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind 
of testing we should do?)
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“End-to-End” Tests are Enormous

Log in to 
Amazon.com

Search for 
product Add to cart Checkout

Check: 
confirmation 
email received?

Check: inventory 
updated?

Check: 
fulfillment 
request sent?



Medium and Large Tests can be Flaky
• Flaky test failures are false alarms
• Tests that are hermetic defend against “test 

order dependency” - failures due to tests 
running in other orders

• Most common cause of flaky test failures: 
“async wait” - tests that expect some 
asynchronous action to occur within a timeout

• Good tests avoid relying on timing

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]
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Flaky Test Example: Async/Wait
• Most common root cause of flakiness

• Difficult to avoid, but consider:

• Have more “small” tests that don’t require 
concurrency

• Ensure sufficient resources available for running 
tests

• Embed reasonable error detection to classify test 
failures as likely to be “flaky” vs true failures

Test fails!

Server startup 
complete

Start server

Make request to 
server

Wait 3 seconds for 
server to start

Start Test

Too late!



Deployed systems create even more testing 
challenges
• Clients believe “how it is now is right”,

• Not “how the API intended it to be is right”
• Writing thorough test suite is even harder, less useful
• What is a “breaking change”?

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases

33



Mock System-Level Components with 
Capture/Replay
• Record the API requests and responses that clients 

make
• Test new versions of the API by identifying requests 

that result in different responses ("breaking 
changes")

34https://www.tradeweb.com/our-markets/data--reporting/replay-service/
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https://www.tradeweb.com/our-markets/data--reporting/replay-service/


Snapshot Tests Can Detect GUI Changes
• The first time the test runs, it saves a "snapshot" of 

the rendered GUI
• Subsequent runs will fail if the snapshot changes
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import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
const tree = renderer

.create(<Link 
page="http://www.facebook.com">Facebook</Li
nk>)

.toJSON();
expect(tree).toMatchSnapshot();

});



Product Owners can Assess Visual Snapshot 
Tests
• Capture a visual snapshot of an application under a state
• If that snapshot changes, produce a visual report for manual sign-off

https://github.com/newsuk/AyeSpy

https://github.com/newsuk/AyeSpy


Learning Objectives for this Lesson
• You should now be prepared to:

• Design test cases for code using fakes, mocks and spies
• Explain why you might need a test double in your testing
• Explain why you might need tests that are larger than unit tests
• Explain how large, deployed systems lead to additional testing challenges
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