
CS 4530: Fundamentals of Software Engineering

Module 12: Testing Larger Things

Jon Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Design test cases for code using fakes, mocks and spies
• Explain why you might need a test double in your testing
• Explain why you might need tests that are larger than unit tests
• Explain how large, deployed systems lead to additional testing challenges

2

Story so far: Tests Check Return Values

3

test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1])
});

export interface IClockWithListeners {
reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time
addListener(listener:IClockListener):void

}

export interface IClockListener {
// @param t - the current time, as reported by the clock
notify(t:number):void

}

export class ProducerClock implements IClockWithListeners {
// some implementation

}

Challenge: How to test the ProducerClock?

4

clockWithObserverPattern.test.ts

Test the ProducerClock with a Fake
ClockListener

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

clockWithObserverPattern.test.ts
export interface IClockWithListeners {

reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time
addListener(listener:IClockListener):void

}

Now we can test using the custom observer
import { ProducerClock } from "./clockWithObserverPattern";

const clock1 = new ProducerClock
const listener1 = new ClockListenerforTest(clock1)

describe("tests for ProducerClock", () => {
test("after reset, listener should return 0", () => {

clock1.reset()
expect(listener1.getTime()).toBe(0)

})
test("after one tick, listener should return 1", () => {

clock1.reset(); clock1.tick()
expect(listener1.getTime()).toBe(1)

})
test("after two ticks, listener should return 2", () => {

clock1.reset(); clock1.tick(); clock1.tick()
expect(listener1.getTime()).toBe(2)

})
})

clockWithObserverPattern.test.ts

“Test Doubles” Stand In For Other
Components
• Act as a stand-in for components, allowing for

testing in isolation
• Fakes: Replace client implementations with

dummies for testing
• Mocks: Automatically-generated fake

implementations for an interface
• Spies: Automatically-instrument internals of

objects, classes or modules

Mo

Test doubles replace uncontrollable things
with things that you do control

8

Network
Resources

Database

The SUT

Human User

Fake Listener: Discussion

• Good news:
• It works!
• It doesn’t require learning other libraries

• Bad news:
• It’s a maintenance burden (what if new methods are

added to IClockListener?)
• It took manual effort to write
• Richer fakes (e.g. track how many times a method

called) are even more effort to write

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

Mocks are automated fakes
• Jest’s mocks return “undefined” by default (can be customized), and

track calls to the function
test("simplest mock behavior", () => {

const mockFunction1 = jest.fn();

const result1 = mockFunction1("17");
const result2 = mockFunction1("42")

expect(result1).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunction1).toHaveBeenCalled();
expect(mockFunction1).toHaveBeenCalledTimes(2);

expect(mockFunction1).toHaveBeenCalledWith("17");
expect(mockFunction1).toHaveBeenCalledWith("42")

});

You can customize your mock in many ways
test("customizing mock functions", () => {

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(mockFunction2(3)).toBe(6);
expect(mockFunction2(14)).toBe(28)
expect(mockFunction2).toHaveBeenCalledWith(3);
expect(mockFunction2).toHaveBeenCalledWith(14);

// you can also reset the mock's history and implementation
mockFunction2.mockReset()
expect(mockFunction2).not.toHaveBeenCalledWith(14);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

simpleMocks.test.ts

https://jestjs.io/docs/mock-function-api

Mock Classes and Interfaces with Jest-Mock-
Extended
import { mock, mockClear } from 'jest-mock-extended';
import { IClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
//Automatically create an implementation of IClockListener, each method is a mock function
const listener1 = mock<IClockListener>();
clock1.addListener(listener1);

describe('tests for ProducerClock', () => {
beforeEach(() => {

mockClear(listener1); //Clear the mock function's history
});
test('after one tick, listener should return 1', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should return 2', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(2);
expect(listener1.notify).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternMock.test.ts

Unlike mocks, spies instrument existing
implementations
• Consider cases where you don’t want a complete

fake, but do want to check side-effects:
• What was sent on the network?
• How many times was a problem logged?
• What was inserted in the database?

• Jest can automatically instrument existing code to
make it into a “spy” – a mock but with the original
implementation

Spy
"remembers"

Use jest.spyOn to create a spy on an object
import { ClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
const clockClient = new ClockListener(clock1);
const notifySpy = jest.spyOn(clockClient, 'notify’); // Spy on calls to notify on this clock
describe('tests for ProducerClock', () => {
beforeEach(() => {
notifySpy.mockClear(); // Clear the mock function's history

});
test('after one tick, listener should return 1', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should return 2', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(2);
expect(notifySpy).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternSpy.test.ts

• Syntax: jest.spyOn(object, methodName)
• Example from last slide:

• You can specify any object, and any method name (even private methods)
• Spy on objects or entire modules
• The spy logs all calls to that method of that object or module
• The call to the original still gets made, unless the spy explicitly supplies a substitute

• we'll illustrate this a few slides from now.

const clock1 = new ProducerClock();

/** Some listener that we happen to know about */
const clockClient = new ClockListener(clock1);

/** Spy on calls to 'notify' on this listener */
const notifySpy = jest.spyOn(clockClient, 'notify’);

Spies can be used even when you can’t
control the SUT

Let’s use mocks and spies to test the http
client from the async module
export class Echo {

/** @argument a string
* @returns a promise to return the same string
* @requires axios
* @calls https://httpbin.org/get?answer=${str}
*/

public static async echo(str: string): Promise<string> {
const res = await axios.get(`https://httpbin.org/get?answer=${str}`);
return res.data.args.answer;

}

}

EchoClass.ts

Create a spy on (axios, 'get')

import { Echo } from './EchoClass';

// etc...

test('just spying on a function runs the original', async () => {
test('echo should return its argument', async () => {
const spy1 = jest.spyOn(axios, 'get');
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

});
});

echo.test.ts

Next step: define a mock for the axios call
async function mockAxiosCall(url: string) {

return { data: { args: { answer: url.split('=')[1] } } };
}

// Hmm, we better test mockAxiosCall!

describe('tests for mockAxiosCall', () => {
test('mockhttpbin should return its argument', async () => {
const url = 'https://httpbin.org/get?answer=33'
const res = await mockAxiosCall(url);
expect(res).toEqual({ data: { args: { answer: "33" } } });

});
})

echo.test.ts

Now install the mock, so the 'get' doesn't
get called.

test('mock axios.get so httpbin is not called', async () => {
jest.resetAllMocks();
const spy1 = jest.spyOn(axios, 'get').mockImplementation(mockAxiosCall);
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

})

echo.test.ts

What if we wanted to test a client of echo?
• But we didn't want to issue any http requests

import { Echo } from './EchoClass';

/** calls echo twice and concatenates the results */
export async function echoClient(str: string) {

const res1 = await Echo.echo(str);
const res2 = await Echo.echo(str);
return res1 + res2;

}

echoClient.ts

Solution: create a mock for Echo
import { echoClient } from './echoClient';

describe('tests for echoClient', () => {
beforeEach(jest.resetAllMocks);
beforeEach(() => {
// mock echo with a correct return value
jest.spyOn(Echo, 'echo').mockImplementation((str: string) => Promise.resolve(str));
// mock axios.get to always throw an error;
// if our test calls the real axios.get, it will fail
jest.spyOn(axios, 'get').mockRejectedValue('axios.get should not be called');

})
test('echoClient should return its argument twice', async () => {
const str = '345';
const res = await echoClient(str);
expect(res).toEqual(str + str);

});
})

echoClient.test.ts

Test Doubles Have Weaknesses
• Some failures may occur purely at the integration

between components:
• The test may assume wrong behavior (wrongly encoded

by mock)
• Higher fidelity mocks can help, but still just a snapshot of

the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test double;
• The test is "brittle" because it depends on internal

behavior of SUT;

• Potential maintenance burden: as SUT evolves,
mocks must evolve.

22

Not just its IO
behavior, but

also its
dependencies

Did we correctly
model the

behavior of
httpbin?

What if we didn't want to make assumptions
about how httpbin behaves?
• We'd need to actually call httpbin.
• This is no longer a unit test; it's an integration test
• Which brings us to our next topic.

But some bugs are observable only when
multiple components interact.
• These are usually because one module has

made incorrect assumptions about some
other module

• Unit tests won’t reveal such bugs
• Mocks won’t help, either (since they may

incorporate our incorrect assumptions)
• So you really need integration tests

24

1 class of 1 program
running on 1 server

1 program running
on 1 server

Mork

UnitIntegration

Integration tests may be larger

• Does the presence of
other jobs on our
server change the
behavior of our
program?

• Does the presence of
the other servers
change the behavior
of our program?

25

1 class of 1 program
running on 1 server

1 program running
on 1 server

Mork

UnitIntegration

1 web server in a
cluster of

100,000 servers

Some Tests are Enormous

26

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

Google classifies tests by “size”

• “small” = single process
• “medium” = single machine
• “large” = bigger than that.

27"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

"Small""Medium"

"Large"

How big is my test?

• Small: run in a single thread, can’t sleep, perform I/O or
make blocking calls

• Medium: run on single computer, can use
processes/threads, perform I/O, but only contact
localhost

• Large: Everything else

28"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind
of testing we should do?)

29

Pyramid
Test Pattern

“End-to-End” Tests are Enormous

Log in to
Amazon.com

Search for
product Add to cart Checkout

Check:
confirmation
email received?

Check: inventory
updated?

Check:
fulfillment
request sent?

Medium and Large Tests can be Flaky
• Flaky test failures are false alarms
• Tests that are hermetic defend against “test

order dependency” - failures due to tests
running in other orders

• Most common cause of flaky test failures:
“async wait” - tests that expect some
asynchronous action to occur within a timeout

• Good tests avoid relying on timing

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Async Wait
37%

Test Order
Dependency

17%

Concurrency
17%Resource Leak

10%

Network
9%

Time
4%

Random
3%

Floating Point
3%

Unordered
Collections

1%

Flaky Test Example: Async/Wait
• Most common root cause of flakiness

• Difficult to avoid, but consider:

• Have more “small” tests that don’t require
concurrency

• Ensure sufficient resources available for running
tests

• Embed reasonable error detection to classify test
failures as likely to be “flaky” vs true failures

Test fails!

Server startup
complete

Start server

Make request to
server

Wait 3 seconds for
server to start

Start Test

Too late!

Deployed systems create even more testing
challenges
• Clients believe “how it is now is right”,

• Not “how the API intended it to be is right”
• Writing thorough test suite is even harder, less useful
• What is a “breaking change”?

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases

33

Mock System-Level Components with
Capture/Replay
• Record the API requests and responses that clients

make
• Test new versions of the API by identifying requests

that result in different responses ("breaking
changes")

34https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Current version
of API

Next version of
API

Clients (created
by many third

parties)

Capture/Replay
Proxy for
Testing

Production traffic

Production traffic

Replay production
traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Snapshot Tests Can Detect GUI Changes
• The first time the test runs, it saves a "snapshot" of

the rendered GUI
• Subsequent runs will fail if the snapshot changes

35

import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
const tree = renderer

.create(<Link
page="http://www.facebook.com">Facebook</Li
nk>)

.toJSON();
expect(tree).toMatchSnapshot();

});

Product Owners can Assess Visual Snapshot
Tests
• Capture a visual snapshot of an application under a state
• If that snapshot changes, produce a visual report for manual sign-off

https://github.com/newsuk/AyeSpy

https://github.com/newsuk/AyeSpy

Learning Objectives for this Lesson
• You should now be prepared to:

• Design test cases for code using fakes, mocks and spies
• Explain why you might need a test double in your testing
• Explain why you might need tests that are larger than unit tests
• Explain how large, deployed systems lead to additional testing challenges

37

	CS 4530: Fundamentals of Software Engineering��Module 12: Testing Larger Things
	Learning Objectives for this Lesson
	Story so far: Tests Check Return Values
	Challenge: How to test the ProducerClock?
	Test the ProducerClock with a Fake ClockListener
	Now we can test using the custom observer
	“Test Doubles” Stand In For Other Components
	Test doubles replace uncontrollable things with things that you do control
	Fake Listener: Discussion
	Mocks are automated fakes
	You can customize your mock in many ways
	Mock Classes and Interfaces with Jest-Mock-Extended
	Unlike mocks, spies instrument existing implementations
	Use jest.spyOn to create a spy on an object
	Spies can be used even when you can’t control the SUT
	Let’s use mocks and spies to test the http client from the async module
	Create a spy on (axios, 'get')
	Next step: define a mock for the axios call
	Now install the mock, so the 'get' doesn't get called.
	What if we wanted to test a client of echo?
	Solution: create a mock for Echo
	Test Doubles Have Weaknesses
	What if we didn't want to make assumptions about how httpbin behaves?
	But some bugs are observable only when multiple components interact.
	Integration tests may be larger
	Some Tests are Enormous
	Google classifies tests by “size”
	How big is my test?
	Testing Distribution (How much of each kind of testing we should do?)
	“End-to-End” Tests are Enormous
	Medium and Large Tests can be Flaky
	Flaky Test Example: Async/Wait
	Deployed systems create even more testing challenges
	Mock System-Level Components with Capture/Replay
	Snapshot Tests Can Detect GUI Changes
	Product Owners can Assess Visual Snapshot Tests
	Learning Objectives for this Lesson

